Dear colleagues,

On behalf of the executive board of the Federation of European Physiological Societies I wish you a prosperous 2009.

The most important FEPS event this year is the joint FEPS - Slovenian and Austrian Physiological Societies to be held in Ljubljana from 12 to 15 November 2009. More information on this meeting is provided on page 2 of the Newsletter. Please, mark your agenda and don’t miss the opportunity to meet your fellow European Physiologists in the charming capital of Slovenia.

The joint FEPS meeting in 2010 is also getting shape. This meeting will be a combined activity of the German and Scandinavian Physiological Societies and FEPS. More information will be published in the upcoming Newsletter.

Ger J. van der Vusse
Secretary General of FEPS
Joint meeting of the
Slovenian and Austrian Physiological Societies
and FEPS, 2009

The meeting will be held in the capital of Slovenia, Ljubljana, November 12 - 15, 2009. Professor Robert Zorec is chairing the Organizing and Program Committee of the Joint 2009 FEPS meeting.

The congress includes the yearly European Young Physiologist Symposium, the Physiological Teaching Symposium (organised by prof. Luc Snoeckx, chairman of the FEPS Task Force on Teaching Physiology) and symposia dedicated to important scientific topics in Physiology. Oral presentations and poster sessions will also be part of the joint-meeting. Experts in the field of Physiological Sciences will present key note lectures, among others, the prestigious yearly FEPS Key Note Lecture.

More information on the meeting can be found in the website of the 2009 FEPS meeting: http://lnmcp.mf.uni-lj.si
PLATON G. KOSTYUK

Director of the Bogomolets Institute of Physiology, advisor of the Presidium of the National Academy of Sciences and Academy of Medical Sciences of Ukraine, member of the Russian Academy of Sciences, member of the European Academy of Sciences, member of the German Academy of Natural History “Leopoldina”, member of the Academy of Sciences of Czechoslovakia and member of the Hungarian Academy of Sciences.

Platon G. Kostyuk is a scientist whose contribution to neuroscience, molecular biology and cell biophysics is enormous. He was an outstanding investigator in neurophysiology (synaptic processes in the spinal cord) and in molecular biology and biophysics of the nervous cell (structure and function of ionic channels, membranous receptors). He founded the Ukrainian school of scientists in the field of neurophysiology, cell and molecular physiology and contributed significantly to its success.

Kostyuk was born in 1924 in Kyiv in the family of a well-known Ukrainian psychologist Grygoriy S. Kostyuk, a member of the Academy of Pedagogical Sciences in the USSR and the founder of the Institute of Psychology in Ukraine. It was his father who inspired Platon Kostyuk to start a scientific career. Because of his German nurse, Platon could speak German fluently when he was only five years old. When he arrived later in Germany, his fluent German with Prussian accent made people think that he stemmed from Germany. At the age of 6, he played the piano very well and at school he even considered to become a concert-pianist. Fortunately, he did not become a professional musician, instead Science became his main ambition. However, love to music made him to follow a two-year course at the Kyiv conservatory in addition to higher biological and medical education. He graduated from Shevchenko National University (Kyiv) in 1946, and the Kyiv Medical Institute in 1949. At the age of 25, he became PhD, and 7 years later he received his Doctor of Sciences degree. Two years later he organized his own laboratory at the Bogomolets Institute of Physiology, which soon (1958) was transformed into the Department of General Physiology of the nervous system. At that time his successful reports at International Congresses of Physiological Sciences underpinned the impressive progress of Ukrainian physiological science. Kostyuk's scientific achievements were published in leading international scientific journals in English, German and French. His scientific potential as well as his personality resulted in accepting the leadership of the Bogomolets Institute of Physiology, which he headed since 1966.

It was the Institute of Physiology where the method of microelectrode investigations of excitable cells was widely used for the first time in the former USSR. The microelectrode technique developed by a young Ukrainian physiologist was absolutely a new approach to investigating neurons, generating a lot of important data about physico-chemical processes in nervous and smooth muscle cells, and about mechanisms of synaptic transmission and ionic mechanisms of excitation. The delicate experiments and new ideas needed novel equipment which resulted in Kostyuk’s endeavor to start instrument building under Institute’s guidance. His scientific priorities of that time were demonstrated in two books: Microelectrode technique and Two-neuron reflex arc.

An important aspect of his work was dealing with calcium channels. To study calcium homeostasis in nervous cells and metabolic disturbances in brain pathology, he introduced the recording of single ion channels into the practice of scientific research. These studies showed the presence of a whole family of potential-controlled membrane channels capable to forming the input flow of calcium ions in response to depolarization of the neuronal membrane in a highly selective manner. The channels could be divided into two functional groups on basis of their sensitivity to changes in membrane potential: low- and high-threshold ones. He found that a combination of ionic
channels for each type of neurons determined the wide spectrum of excitability manifestations. These features allow each neuron to respond, in a specific way, to the corresponding input signal at a certain time. He was also the first to use a method of intracellular soma dialysis in the nervous cell to study its membrane and molecular mechanisms.

Kostyuk’s investigations of mechanisms of calcium permeability in membranes of the nervous cell (Investigations of Ion Mechanisms of the Nerve Cell Soma) were recognized as an highly important discovery and he was awarded with the State Prize of the USSR (Kostyuk et al. 1983) and later the Galvani International Prize, USA (1992).

The personality of Platon Kostyuk, together with his scientific reputation, his authority as a scientist and his wisdom, attracted numerous scientists all over the world. The Institute collaborated with the Nensky Institute of Experimental Biology of the Polish Academy of Sciences, the St. George Hospital of the London University, universities in Paris and Lille in France, the Max Delbruck Centre in Berlin, and the German Max Plank Institutes. Moreover close collaborations were established with universities in California, New Jersey, Miami, Minnesota, Columbia, Missouri, and Florida in the USA, with the Institute of Brain Research in Tokyo, the Institute of Pharmacology of the Milan University in Italy and the National University of Halve in Sweden. The list of Kostyuk’s scientific contacts can serve as an illustration of the history of physiological science. He liked to visit the laboratory of Alan Hodgkin and Andrew Huxley in Cambridge and discussed his own ideas with them. In fact, Kostyuk started his explorations using the microelectrode method at the time that these scientists developed their mathematic model of nervous impulse and formulated the membranous theory of bioelectrical events in excitable tissues (1952). It was the time that Huxley discovered the so-called sodium pump. Together with J. Eccles, these British scientists received the Nobel Prize for discovering ionic mechanisms in membrane of a neuron in 1963. The scientific activity of these scientists was very close to Kostyuk’s own scientific interests, and their opinion on his scientific achievements was very important to him. In 1961, Kostyuk accepted an invitation of Prof. J. Eccles to visit his laboratory in Canberra. A very productive collaboration started. Prof. Bernard Katz, a scientist who showed the role of calcium ions in the process of transmitter release, was another person whose laboratory in London Kostyuk liked to visit. He also kept in touch with Prof. Alfred Fessar in the Institute of Physiology in Gif-sur-Yvette, a suburb of Paris: one day he presented a report at a conference held in Paris in the French language. He had intensive professional contacts with German scientists, such as J. Dudel (Munich), M. Kleyer (Frankfurt am Maine), and Prof. Robert Schmidt (Wurzburg), who he met in Canberra (1961). A textbook of Human Physiology by Prof. Schmidt was published twice in Russian, edited by Kostyuk.

The academician Kostyk was engaged in training of highly qualified scientific staff in molecular physiology and biophysics. He organized the Department of Molecular Physiology and Biophysics of the Physico-Technical Centre of the National Academy of Sciences of Ukraine. In June 2000 the UNESCO Department of Molecular and Cell Physiology was opened at the Bogomolets Institute of Physiology, evidencing the high level and significance of fundamental and applied investigations in the field of molecular physiology and neurophysiology carried out at the Institute. Kostyuk shares the headship of the department with Prof. Ervin Neher (Germany), the Nobel Prize Laureate.

In 1969 Platon G. Kostyuk founded the Journal of Neurophysiology (Kyiv) which was later published in English by Plenum Publishing Corporation (USA, UK) and, at this moment, by Springer Verlag. Together with Prof. D. Smith and Prof. M. Ito, he founded the International Journal of Neuroscience (Oxford, UK), which he served as co-editor during 1976 - 1999.

Kostyuk has contributed much to development of the Ukrainian science as a member of the National Academy of Sciences of Ukraine: he was vice-president of the National Academy of Sciences of Ukraine for 6 years (1993-1998); since 2005 he acted as advisor of the Presidium of the National Academy of Sciences of Ukraine.
Platon Kostyuk’s influence is extending far beyond the realm of physiological science: he played a fundamental role in the scientific and cultural life of Ukraine as member of the Ukrainian Parliament (Supreme Council of Ukraine) and head of the Supreme Council of Ukraine between 1975 -1990. There he revealed his hopes for the future and the task he had set for himself to help the scientific and cultural revival of Ukraine in the years to follow.

For the development of Ukrainian science and professional schools, for training future professionals, his sensing of the importance neurological research, and maintenance of the high level of physiological and biophysical sciences in Ukraine, Platon Kostyuk received a lot of awards, among them: the Order of Labour Red Banner (1967, 1974), the Lenin Order (1981, 1984), the State Prizes of Ukraine (1976, 1992, 2003), the Vernadsky Gold medal N2 of the National Academy of Sciences of Ukraine (2005). He was also nominated for Hero of Socialist Labour in the former USSR (1984) and became Hero of Ukraine (2007). For his contribution to the international scientific community he was awarded with the World Medal of Liberty, USA (2006) and the Gold Medal for Ukraine (2007).

Kostyuk has published more than 650 scientific articles and 16 books, among others:
1. Kostyuk P.G. Two neuron reflector arc. M. 1959 (in Russian)

Lyudmila Shapoval, Doctor of Science (biology)
Leading scientist of the Bogomolets Institute of Physiology,
Secretary of the Ukrainian Physiological Society
Dilatation in the femoral vascular bed does not cause retrograde relaxation of the iliac artery in the anaesthetized pig (p 175-175)

Abstract | References | Full Text: HTML, PDF (Size: 109K)

No evidence for preferential activation of vastus medialis at extended knee angles (p 175-175)

Timothy J. Carroll

Abstract | References | Full Text: HTML, PDF (Size: 109K)

CELL BIOLOGY

Egr-1 mRNA induction by medium flow involves mRNA stabilization and is enhanced by the p38 inhibitor SB203580 in osteoblast-like cells (p 177-188)

T. Ogata

Abstract | References | Full Text: HTML, PDF (Size: 528K)

CARDIOVASCULAR

Arterial stiffness acutely decreases after whole-body vibration in humans (p 189-194)

T. Otsuki, Y. Takanami, W. Aoi, Y. Kawai, H. Ichikawa, T. Yoshikawa

Abstract | References | Full Text: HTML, PDF (Size: 189K)

Ghrelin signalling in guinea-pig femoral artery smooth muscle cells (p 195-206)

Abstract | References | Full Text: HTML, PDF (Size: 651K)

Dilatation in the femoral vascular bed does not cause retrograde relaxation of the iliac artery in the anaesthetized pig (p 207-213)

Abstract | References | Full Text: HTML, PDF (Size: 244K)

MUSCLE

Immunohistochemical changes in the expression of HSP27 in exercised human vastus lateralis muscle (p 215-222)

M. Folkesson, A. L. Mackey, L. Holm, M. Kjaer, G. Paulsen, T. Raastad, J. Henriksson, F. Kadi

Abstract | References | Full Text: HTML, PDF (Size: 540K)

Relative torque contribution of vastus medialis muscle at different knee angles (p 223-237)

C. J. de Ruiter, J. G. Hoddenbach, A. Huurnink, A. de Haan

Abstract | References | Full Text: HTML, PDF (Size: 771K)

NERVOUS SYSTEM

Soleus T reflex modulation in response to spinal and tendinous adaptations to unilateral lower limb suspension in humans (p 239-251)

O. R. Seynnes, N. A. Maffiuletti, C. N. Maganaris, M. D. de Boer, M. Pensini, P. E. di Prampero, M. V. Narici

Abstract | References | Full Text: HTML, PDF (Size: 306K)
Effect of fetal anaemia on myocardial ischaemia-reperfusion injury and coronary vasoreactivity in adult sheep (p 253-253)
Bohuslav Ostadal
Abstract | References | Full Text: HTML, PDF (Size: 108K)

Plasma protein charge: a major determinant of fluid exchange (p 253-253)
Helge Wiig
Abstract | References | Full Text: HTML, PDF (Size: 108K)

REVIEWS
Cell volume regulation: physiology and pathophysiology (p 255-282)
I. H. Lambert, E. K. Hoffmann, S. F. Pedersen
Abstract | References | Full Text: HTML, PDF (Size: 379K)

Control of lipid oxidation during exercise: role of energy state and mitochondrial factors (p 283-291)
K. Sahlin, R. C. Harris
Abstract | References | Full Text: HTML, PDF (Size: 254K)

Contribution of FAT/CD36 to the regulation of skeletal muscle fatty acid oxidation: an overview (p 293-309)
G. P. Holloway, J. J. F. P. Luiken, J. F. C. Glatz, L. L. Spriet, A. Bonen
Abstract | References | Full Text: HTML, PDF (Size: 484K)

CARDIOVASCULAR
Correlations between clinical and physiological consequences of the novel mutation R878C in a highly conserved pore residue in the cardiac Na⁺ channel (p 311-323)
Abstract | References | Full Text: HTML, PDF (Size: 1102K)

Effect of fetal anaemia on myocardial ischaemia–reperfusion injury and coronary vasoreactivity in adult sheep (p 325-334)
Abstract | References | Full Text: HTML, PDF (Size: 397K)

RENAL
Determination of the charge of the plasma proteins and consequent Donnan equilibrium across the capillary barriers in the rat microvasculature (p 335-339)
L. Rüghmeier, P. Hansell, M. Wolgast
Abstract | References | Full Text: HTML, PDF (Size: 174K)

Acknowledgements to Referees (p 341-344)
Abstract | Full Text: HTML, PDF (Size: 110K)
EDITORIAL
International Symposium on Frontiers in Physiology (p 1-1)
Peter Bie
Abstract | Full Text: HTML, PDF (Size: 106K)

ORIGINAL ARTICLES
The calcium-conducting ion channel transient receptor potential canonical 6 is involved in macrophage inflammatory protein-2-induced migration of mouse neutrophils* (p 3-11)
N. Damann, G. Owsianik, S. Li, C. Poll, B. Nilius
Abstract | References | Full Text: HTML, PDF (Size: 473K) | Supporting information

The role of free fatty acids, pancreatic lipase and Ca²⁺ signalling in injury of isolated acinar cells and pancreatitis model in lipoprotein lipase-deficient mice (p 13-28)
F. Yang, Y. Wang, L. Sternfeld, J. A. Rodriguez, C. Ross, M. R. Hayden, F. Carriere, G. Liu, I. Schulz
Abstract | References | Full Text: HTML, PDF (Size: 760K)

REVIEWS
Local Ca²⁺ influx through CRAC channels activates temporally and spatially distinct cellular responses (p 29-35)
A. B. Parekh
Abstract | References | Full Text: HTML, PDF (Size: 243K)

Modulation of calcium signalling by intracellular organelles seen with targeted aequorins (p 37-49)
M. T. Alonso, I. M. Manjarrés, J. García-Sancho
Abstract | References | Full Text: HTML, PDF (Size: 783K) | Supporting information

Regulation of early response genes in pancreatic acinar cells: external calcium and nuclear calcium signalling aspects (p 51-60)
N. Fedirko, J. V. Gerasimenko, A. V. Tepikin, O. V. Gerasimenko
Abstract | References | Full Text: HTML, PDF (Size: 1018K)

Roles of the actin-binding proteins in intracellular Ca²⁺ signalling (p 61-70)
J. T. Chun, L. Santella
Abstract | References | Full Text: HTML, PDF (Size: 465K)

Physiological functions of glucose-inhibited neurones (p 71-78)
D. Burdakov, J. A. González
Abstract | References | Full Text: HTML, PDF (Size: 200K)

Mechanisms of metabotropic glutamate receptor-mediated synaptic signalling in cerebellar Purkinje cells (p 79-90)
J. Hartmann, A. Konnerth
Abstract | References | Full Text: HTML, PDF (Size: 569K)

Genetic manipulation, whole-cell recordings and functional imaging of the sensorimotor cortex of behaving mice (p 91-99)
C. C. H. Petersen
Abstract | References | Full Text: HTML, PDF (Size: 878K)

Measuring diffusion parameters in the brain: comparing the real-time iontophoretic method and diffusion-weighted magnetic resonance (p 101-110)
I. Vorisek, E. Sykova
Abstract | References | Full Text: HTML, PDF (Size: 484K)

Neuronismo y reticulismo: neuronal–glial circuits unify the reticular and neuronal theories of brain organization (p 111-122)
A. Verkhratsky
Abstract | References | Full Text: HTML, PDF (Size: 876K)
The physiology of rodent beta-cells in pancreas slices (p 123-138)
M. Rupnik
Abstract | References | Full Text: HTML, PDF (Size: 542K)

When is high-Ca²⁺ microdomain required for mitochondrial Ca²⁺ uptake?* (p 139-147)
A. Spät, L. Fülöp, P. Koncz, G. Szanda
Abstract | References | Full Text: HTML, PDF (Size: 353K)

Decoding epithelial signals: critical role for the epidermal growth factor receptor in controlling intestinal transport function (p 149-159)
D. F. McCole, K. E. Barrett
Abstract | References | Full Text: HTML, PDF (Size: 385K)

Downstream from calcium signalling: mitochondria, vacuoles and pancreatic acinar cell damage (p 161-169)
S. Voronina, M. Sherwood, S. Barrow, N. Dolman, A. Conant, A. Tepikin
Abstract | References | Full Text: HTML, PDF (Size: 317K)

The lateral intercellular space as osmotic coupling compartment in isotonic transport (p 171-186)
E. H. Larsen, N. J. Willumsen, N. Møbjerg, J. N. Sørensen
Abstract | References | Full Text: HTML, PDF (Size: 799K)

Blood volume, blood pressure and total body sodium: internal signalling and output control (p 187-196)
P. Bie
Abstract | References | Full Text: HTML, PDF (Size: 618K)